

Wind Tunnel Study on the Effects of Ground Clearance Ratio on Heliostat Dynamic Wind Loads

Sahar Bakhshipour, Matthew Emes, Azadeh Jafari, Maziar Arjomandi The University of Adelaide, Australia

16 July 2024 • ASME ES2024 • Anaheim

Introduction

- Dynamic wind loads on operating heliostats
	- Torque bending at modal frequency of 3 Hz corresponds to maximum displacements of 60mm of corner facets (Griffith *et al.* 2015)
	- Out-of-plane torsion and rigid body modes of the mirror frame due to oscillation about the elevation axis cause deflections of the order of 1% of the heliostat characteristic length (Vásquez-Arango *et al.* 2015)
	- Truss member to torque tube interfaces due to out-of-plane bending modes due to wind cause maximum beam deviations of 0.17m and 1.58m, compared with 0.1m and 0.25m due to gravity in the absence of wind (Ho *et al.* 2012)
	- Modal frequencies largely dependent on heliostat size (Ho *et al.* 2012)
- Vortex-induced vibrations induced by wind load fluctuations on a heliostat "flat plate" model depend on elevation angle α , flat plate geometry c and inflow conditions

 $St = fc/U$

conceptual design • components • integration • mass production • heliostat field

NSTTF heliostat FEA simulation (adapted from Griffith *et al.* 2015)

Vortex shedding frequencies (Vásquez-Arango *et al.* 2015)

Objectives

- Investigate the sensitivity of Strouhal number of a single heliostat to:
	- Elevation angle α
	- Ground clearance ratio $GR = G/H$
	- Inflow turbulence

• Spectral analysis of wind load fluctuations measured on a single heliostat using a six-axis load cell and differential pressure sensors

Wind tunnel experiments – instrumentation

- Two inflow conditions: (1) uniform flow (2) turbulent ABL
- 1:6 scale heliostat model
	- $b = 0.33$ m, $c = 0.53$ m, $H = 0.2$ -0.325 m
- JR3 six-axis load cell \pm 100 N F_x , F_y , \pm 200 N F_z , \pm 12 Nm M_x , M_y , M_z with \pm 0.25% accuracy $(G/H = 0.106 - 0.485)$
- 24 differential pressure sensors

±1" H2O (±248.84 Pa) with ±0.25% accuracy

 100

႙

 $\overline{100}$

 $\frac{330}{5}$

• Uniform flow • Turbulent flow

0.8

 $\widehat{\Xi}^{0.6}$

 ω

 0.8

 $\widehat{\Xi}^{0.6}$

 ω

 \bullet

۰

 \bullet

• Uniform flow

• Mean velocity profile

 U_{∞} = 10.5 m/s, δ = 0.2 m

$$
U(z) = \frac{u_{\tau}}{k} \ln \frac{z}{z_0} + d
$$

$$
u_{\tau} = 0.48 \text{ m/s}, z_0 = 0.01 \text{ m}, d = 4.4
$$

$$
U(z) = U_{\infty} \left(\frac{z}{\delta}\right)^{\alpha}
$$

 U_{∞} = 11.1 m/s, δ = 1.3 m, α = 0.35

- Turbulence intensity profiles
	- Open country terrain

Wind tunnel experiments – inflow profiles

Velocity and spectra time series

- Case study: $\alpha = 45^{\circ}$ uniform flow
	- Time series pressure data collected at 1 kHz for 120 seconds
	- PSD (pwelch) of time series data
	- Determine frequency f corresponding to first peak in PSD
	- Determine St as non-dimensional frequency with $c = 0.33$ m and $U_{\infty} = 11.1 \text{ m/s}$

Effect of inflow turbulence

- Impact of inflow turbulence on Strouhal number most significant at $\alpha \leq 30^{\circ}$
- Strouhal number of flat plate model at $\alpha = 88^{\circ}$ smaller in turbulent flow than in uniform flow

Effect of heliostat elevation angle

• Strouhal number of a rectangular flat plate is between that of an infinite flat plate and a square flat plate and aspect ratio becomes significant at $\alpha \leq 30^{\circ}$

Effect of ground clearance ratio (GR)

• Asymmetric pressure distribution at $GR \leq 0.257$ in **uniform flow** due to ground effect generating a jet flow with alternate vortex shedding and asymmetric wake

Velocity profile

Effect of ground clearance ratio (GR)

- Ground effect causes asymmetric flow and a decrease in Strouhal number at smaller GR
- Flow becomes symmetric at higher GR and Strouhal number approaches a nearly constant value of $St = 0.135$ (0.125 without considering flow effects)

Conclusions and next steps

- Strouhal number of a heliostat model is sensitive to inflow ABL turbulence at elevation angles smaller than 30°
- Strouhal number of a heliostat model is smaller in a turbulent ABL inflow than in a uniform flow for ground clearance ratios of less than 0.4. At larger values of ground clearance ratio, Strouhal number becomes almost constant at 0.15
- As heliostat ground clearance ratio decreases, asymmetric wake is formed in vertical plane and Strouhal number increases while for higher values of ground clearance ratio a symmetric wake is formed and Strouhal number stabilizes at a constant value of 0.135
- Ground clearance effects on Strouhal number at elevation angles of 15° and 30° and the influence of inflow turbulence and azimuth angle on dynamic loads requires further investigation

Acknowledgements

- Heliostat Consortium (HelioCon) US Department of Energy (DOE) Solar Energy Technologies Office Award DE-EE00038488/38714
- Australian Solar Thermal Research Institute (ASTRI)

Australian Renewable Energy Agency (ARENA) Grant 1-SRI002

• University of Adelaide fabrication and instrumentation teams

